Developing a Cross-Product Analytic: Kidd Score

In a recent podcast by Sixers Science, an analytic called the Kidd Score was unveiled. The goal of the analytic is to identify players who are great at two ancillary tasks: assists and rebounds. These two components are part of the big three statistical categories that make up the traditional triple double: points, rebounds, assists.…

Deep Dive with Python: Offensive Ratings

The calculation for Offensive Rating, another fruitful Dean Oliver metric, is simple: compute the number of points produced when a player is in the game per 100 possessions that the player is in the game. The computation is performed at a “per possession” rate and scaled out to 100. The challenge lies at being restricted…

Measuring Attack Vectors of Ball-Handlers

As a point guard growing up, I found that driving with my dominant shooting hand would typically put my shooting hand away from the basket. And being undersized at the position (5’4″, 95 pound Sophomore) made life more difficult to shoot off the dribble. Instead, I developed my non-dominant hand, which gave me two options…

Game Score: Focus on Scoring

While I’m on a flight between Albuquerque to Oakland, let’s take a quick glance at another advanced analytic: Game Score. Game score is a metric that was developed by John Hollinger (one of the Godfathers of basketball analytics) to quickly give a rough estimate of a player’s contribution to a game. If a player scores…