Approximating Curves I: Mechanical Process

Now that the 2019-2020 season has ended, let’s take a quick look at something almost every data scientist knows: polynomial projection. Now, if you’re a data scientist and find yourself mumbling, “I’ve never heard of that,” don’t worry: You have. Over the next few posts, we are going to discuss a larger problem of approximating…

Exercising Error: Quantifying Statistical Tests Under RAPM (Part IV)

In the Regularized Adjusted Plus-Minus (RAPM) model, one of the perceived challenges is understanding the error associated with the resulting posterior RAPM value a player receives. In a previous post, we noted that RAPM is a Bayesian model in which we assume that “player contribution” can be estimated through weighted offensive ratings conditioned on the…

Regularized Adjusted Plus-Minus Part III: What Had Really Happened Was…

Over the previous couple seasons, I have written extensively about how Regularized Adjusted Plus-Minus (RAPM) is constructed, what the assumptions really mean, and how we interpret the results. If you’re curious for a refresher, feel free to remind yourself here. There’s an example in there that clearly breaks down how various forms of adjusted plus-minus…

Modeling the Pass

Over the course of the years, NBA Stats has released a variety of information about passing in games. A few years ago, we could directly query the “single-hop” passing network between players. It allowed me to then perform a topical analysis such as Kobe Bryant’s role within the Los Angeles Lakers’ offense. Unfortunately, little information…